
Testing in Layers
http://www.aleax.it/pyconit17_en.pdf

©2017 Google -- aleax@google.com
1

1

A typical SW system

LL1 LL2
DB

adapt
DNS

adapt
Auth

DB DNS

MLA MLB MLC MLD

HL𝛂 HL𝛃 HL𝛄

2

2

Why test?

if you need me to explain this…

…then you need my OTHER talks
on testing!-) [other people's too]

i.e, I'm not covering that today!-)

3

3

How do we test it?

ancient way: white-box, black-box

too-close modern way…:

unit-tests: white-boxy, dev-focused

integration-tests: end-to-end

maybe: human-in-loop QA

4

4 QA = Quality Assurance (use a different term than "test", it's TOTALLY
different!!!)

Best way: layers
unit-tests (fast, run all the time)

strictly on internal logic

mock out “every” dependency

fast above all (as they run all the time)

higher-layer tests

pattern language: match the CODE layers!

5

5 If running automatically in the background, fast allows lower latency
for feedback;

if not, fast means you'll run tests more often; either way -> higher
productivity

The fundamental
things apply… e.g:
all tests must be reproducible

if any randomness, force a seed

if depends on current time of
day, day of week, etc etc, must
fake time

test-first approach to fixing bugs

6

6 …and many other excellent, necessary qualities of automated tests,
layered or not.

Testing DBa

LL1 LL2 DB
adapt

DNS
adapt

Auth

DB DNS

MLA MLB MLC MLD

HL𝛂 HL𝛃 HL𝛄

7

7

How to test DBa

pure unit-test: mock out DB

fine if we understand DB 100%

2nd layer int-test: emulated DB

local, controlled, maybe in-mem

including semantic constraints!

8

8 DB = database

What's a Semantic
Constraint?

e.g: "after conn.close() no other call
is allowed, RuntimeError raised"

a fake must emulate this behavior

…a mock will not unless you
already KNOW all about it (still
worth it for maintainers)

9

9 A fake may also add constraints such as "DB size < 23 MB" — for test
uses, should be OK.

from unittest import mock # also in later slides

for pure unit-test:
with mock.patch.object(dba,'db',autospec=True) as fdb:
 # prepare fdb's side effects under test
 fdb.connect.cursor.side_effect = …
 …
 # body of tests

for 2nd layer integration-test:
fdb = fake_db.Fake(…params…)
with mock.patch.object(dba,'db',new=fdb):
 # populate fdb for the test
 fdb.connect().cursor().execute(…)
 …
 # body of tests

for full integration-test:
start and populate real db for the test
body of tests

10

10

"Body of tests"

core reusable part

exercises all relevant paths

including "simulated" exceptions

optionally followed by (for mocks):

check of calls, arguments, …

11

11 "Body of tests" constant and reusable; difference among test layers is
in the preparation for running the "body of tests" (optionally also in
extra checks afterwards for mocks).

Mocks aren't Fakes

…nor other kinds of test doubles (see
https://martinfowler.com/articles/
mocksArentStubs.html)

dummy, fake, stub, spy, mock

key issue: who owns/maintains

12

12

Mocks vs Fakes

mock: flexibly emulates anything

depending on tests' calls on it

lets you check calls, args, …

fake: fast, limited simulation

of a specific component/module

13

13 Both should also, on request, emulate error situations (e.g. "CPU on
fire":-) to check your code handles such disasters gracefully (almost
impossible to check w/o simulation!).

Testing MLA

LL1 LL2
DB

adapt
DNS

adapt
Auth

DB DNS

MLA MLB MLC MLD

HL𝛂 HL𝛃 HL𝛄

14

14

How to test MLA

pure unit-test: mock out LL1, LL2

fastest, mostly fine (team ownership)

2nd layer int-test: actual LL1, LL2

if fast enough (check w/timeit)…

don’t need pure unit-test (less work)

15

15 If uncertain, try both ways — timeit!

for pure unit-test:
with mock.patch.object(mla,'ll1',autospec=True) as f1,\
 mock.patch.object(mla,'ll2',autospec=True) as f2:
 # prepare f1's & f2's side effects under test
 …
 # body of tests

for 2nd layer integration-test:
prepare ll1's and ll2's for the test
body of tests

no further integration-tests in this specific case

16

16

Testing HL𝛃

LL1 LL2
DB

adapt
DNS

adapt
Auth

DB DNS

MLA MLB MLC MLD

HL𝛂 HL𝛃 HL𝛄

17

17

How to test HL𝛃

pure unit-test: mock out MLB, MLC

2nd layer int-tests: actual MlB, MLC

mock DBa, DNSa; mock or real LL2

3rd layer i-t: act. ML*, LL2, DBa, DNSa

mock or fake DB, DNS

(pick subset, else, combinatorial explosion!)
18

18 tradeoffs: mocks may be faster; mostly: ownership of test-double,
thus, how much detailed/precise understanding of corner cases is
needed

An Example HL𝛃 test

LL1 LL2 DB
adapt

DNS
adapt

Auth

fake
DB

mock
DNS

MLA MLB MLC MLD

HL𝛂 HL𝛃 HL𝛄

mock actual

actual actual

19

19

code for the example:
with mock.patch.object(hbb,'mlb',autospec=True) as fb:
 # prepare fb's side effects under test
 …
 fdb = fake_db.Fake(…params…)
 with mock.patch.object(dba,'db',new=fdb):
 # populate fdb for the test
 fdb.connect().cursor().execute(…)
 with mock.patch.object(dnsa,'dns',autospec=True) as fd:
 # prepare fd's side effects under test
 …
 # body of tests

20

20

Use mock, fake, or
actual module?

mock: fastest, least accurate

actual: least work, if fast enough

design it to be primeable for speed

fake: best if there (thorough, deep, fast)

coding a good fake is a lot of work

21

21

Check complexity
e.g., external "DNS" module — what DNS
records?

often: just A records, DN → IP

trivial to mock or fake

or: CNAME, HINFO, MX, NS, PTR, SOA, TXT, …

needs careful fake (mock VERY hard to
make and keep correct and complete!)

22

22 DNS = Domain Naming System; once mostly a simple "my.host.com" -
> 22.33.44.55 mapping, now (over?)grown into much richer
functionality (e.g., TXT records to validate ownership)

Load-test in layers

actual elapsed-time measurements
need end-to-end code paths

BUT: with intermediate tests you can
get (t) time in your code plus (n)
number of calls to external systems

…and can compute worst case total
time as: t + n * (ext.sys.'s SLAs)

23

23 SLA = Service Level Agreement (e.g.: "90% of queries answered in <
33 msec")

"body of tests" for
load testing

not the same as for other tests

rather: take correctness for granted;

exercise perf-critical paths

usually best to separate for easier
elapsed-time measurement

24

24

Test refactorings
within module: all talk applies (keep
coverage; edit mocks or fakes ditto)

moving functionality between modules:

at first, unit-tests must fail

edit tests, mocks/fakes (check pass!)

run interm. int-tests of higher levels

versions with actual lower levels!
25

25 In a sense, it's automatically a test-driven situation (since tests must
exist before refactoring).

Tests & logging
unit-tests must be fast

check only what's checkable fast

for everything else:

log/snapshot status in detail

later, run batch/b.ground jobs to check

batch sanity checks on logs/snaps: good idea

including non-testing production runs!
26

26

Q? A!
http://www.aleax.it/pyconit17_en.pdf

27

