
©2013 Google -- aleax@google.com

"Good Enough" IS
Good Enough!

http://www.aleax.it/pycon13_geige.pdf

Some Cultural Assumptions...:
everybody should always be striving for
perfection at all times!

settling for a software release that's
anywhere below "perfect!" is a most
regrettable compromise.

do you mostly agree with these...? OR...:

keep-it-simple, just-good-enough
launch early, launch often!
iteratively improve, enhance, refactor...

2

"Worse is Better"
Richard Gabriel, 1989, a Lisp conference

"New Jersey" approach, AKA "WiB"
vs

"MIT/Stanford" approach, AKA "The Right
Thing"

years of debate afterwards (plenty of it by
RG, sometimes as "Nickieben Bourbaki")...

on BOTH sides of the issue!-)

3

Worse-is-better (e.g: Unix)
simplicity

implementation (esp!) AND interface
most important consideration in design

correctness
(slightly) better be simple than correct

consistency
"not overly inconsistent"

completeness
can be sacrificed to any of the top 3
MUST be, if simplicity's threatened

4

"The Right Thing" ("MIT")
simplicity

esp. interface
correctness

absolute-must, top priority
consistency

just as important as correctness
completeness

roughly as important as simplicity

5

Quoting RG himself...:
The right-thing philosophy is based on
letting the experts do their expert thing
all the way to the end before users get
their hands on it.
Worse-is-better takes advantage of the
natural advantages of incremental
development. Incremental improvement
satisfies some human needs...

6

G.K. Chesterton
Anything worth doing...

...is worth doing badly!

7

Cathedral, Bazaar...?
Eric Raymond, 1997
focus: two diverging models of
software development

Cathedral: close to RG's
"right-thing" MIT/Stanford

experts in charge
Bazaar: chaotic, launch-and-
iterate NJ-like models -- crowd in charge

The core Bazaar idea: "given enough
eyeballs, all bugs are shallow"

8

BUGS?! I don't DO bugs!
my very first program ever WAS bug-free

1974: 3 freshmen HW design majors and
a Fortran program to compute conditional
probabilities of suit-division in bridge
we had to punch it into punched cards
we got one-&-only-one chance to run it...!

it ran perfectly that first-and-only-time...!
...never ever happened again in my life.
...don't count on it, buddy...!-)

9

"Perfection" -> BDUF
If you want to only release "Perfection",

you clearly need "Big Design Up Front"
everything must proceed top-down,

perfect identification of requirements,
begets perfect architecture,
begets perfect design,
begets perfect implementations,
(it takes...) forever and ever, A-MEN!

alas! real life doesn't tend to co-operate...
stakeholders resent the "forever" part!-)

10

BDUF vs the real world
requirements change all the time

you ain't ever gonna nail them perfectly!
architecture varies with design choices
design varies with implementation techs
implementation _always_ has bugs

only discovered in real-world deployment
-->

• ITERATIVE development's the only way to go!
• deploy SOMEthing, fix bugs, improve, ...
• solve SOME user problems, win mindshare

11

"Perfect": verb, ¬adjective!
perfecting your work is great

keep doing it -- based on real data!
perfection is a process, NOT a state

you never "reach" it
goalposts keep shifting
no laurels to rest on!

12

What not to skimp on
light-weight, agile process and its steps

revision control, code reviews, testing...
proper release-engineering practices

code style, clarity, elegance
documentation

13

no cowboy coding!

TCP/IP vs ISO/OSI

rough consensus...
...and RUNNING CODE
(David Clark: MIT, but...
IETF front and center!)

14

Xanadu vs the WWW

15

Perfect, ideal
hypertext

Hackish, incrementally
improved hypertext

Guess which one
conquered the world...?-)

Intr syscall: ITS vs Unix
MIT AI Lab's ITS:

every long-running syscall needs to be
quasi-atomic AND interruptible...

so: every syscall must be able to...:
unwind state changes at ANY point
resume user-mode for intr. service
restart kernel-mode syscall again

early Unix:
errno←EINTR, return -1 -- that's it!-)

16

Satisficer vs Maximizer

17

Satisficer:
90% is just fine,
take it, move on!

80% may be OK
(20% of effort:
Pareto's Law)

Maximizer:
99.99% is NOT

100%,
so it's A FAIL!

Metaclass vs Decorator
class Meta(type):
 def __new__(m, n, b, d):
 cls = type.__new__(m, n, b, d)
 cls.foo = 'bar'
 return cls
class X:
 __metaclass__ = Meta

def Deco(cls):
 cls.foo = 'bar'
 return cls
@Deco
class Y(object): pass

18

...vs...

Good enough never is (or is it?)
Eric Ries, http://www.linkedin.com/today/
post/article/20121008194203-2157554-
good-enough-never-is-or-is-it
"Lean Startups" use the "middle way" to...:
minimum viable product: that version of a
new product which allows a team to collect
the maximum amount of validated learning
with the least effort

37signals' Hansson disagrees: "just build
something awesome and ship it";-)

19

"Lowering expectations"?
NO! our dreams must stay big! BHAG!

Rightly traced and well ordered: what of
that? // Speak as they please, what does
the mountain care?

however: the best way TO those dreams
remains "release early, release often"

learn from real users' interactions
Ah, but a man's reach should exceed his
grasp // Or what's a heaven for?
Browning's Andrea del Sarto: less is more!

20

Q & A
http://www.aleax.it/pycon13_geige.pdf

21

? !

