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Some Cultural Assumptions...:

@ everybody should always be striving for
perfection at all times!

@ settling for a software release that's
anywhere below “perfect!” is a most
regrettable compromise.

@ do you mostly agree with these...? OR...:

@ keep-it-simple, just-good-enough
@ launch early, launch often!
@ iteratively improve, enhance, refactor...




"Worse is Better"

@ Richard Gabriel, 1989, a Lisp conference
@ 'New Jersey" approach, AKA "WiB"
@ VS

@ "MIT/Stanford" approach, AKA "The Right
Thing"

@ years of debate afterwards (plenty of it by
RG, sometimes as "Nickieben Bourbaki")...

@ on BOTH sides of the issue!-)




Worse-is-better (e.g: Unix)

@ simplicity

@ implementation (esp!) AND interface

@ most important consideration in design
@ correctness

@ (slightly) better be simple than correct
@ consistency

@ "not overly inconsistent”
@ completeness

@ can be sacrificed to any of the top 3

® MUST be, if simplicity's threatened
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"The Right Thing” ("MIT")

@ simplicity
@ esp. interface
@ correctness
@ absolute-must, top priority
@ consistency
@ Just as important as correctness
@ completeness
@ roughly as important as simplicity




Quoting RG himself...:

@ The right-thing philosophy is based on
letting the experts do their expert thing
all the way to the end before users get
their hands on it.

@ Worse-is-better takes advantage of the
natural advantages of incremental
development. Incremental improvement
satisfies some human needs...




G.K. Chesterton

@ Anything worth doing...
@ ...Is worth doing badly!




Cathedral, Bazaar ?

@ Eric Raymond, 1997 THE CATHED
@ focus: two diverging models of EAL[A VIV
software development S

@ Cathedral: close to RG's be .
"right-thing" MIT/Stanford *y B/ K3

@ experfs In charge RS R

@ Bazaar: chaotic, launch-and-
iterate NJ-like models -- crowd in charge

@ The core Bazaar idea: “given enough
eyeballs, all bugs are shallow”

WITH A FORENORD BY 36 YOUNS, CHARMAN & CEO OF RED HAT, I8¢
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BUGS?! I don't DO bugs!

@ my very first program ever WAS bug-free

@ 1974: 3 freshmen HW design majors and
a Fortran program to compute conditional
probabilities of suit-division in bridge

@ we had to punch it into punched cards
@ we got one-&-only-one chance to run it..!

@ it ran perfectly that first-and-only-time...!
@ ..never ever happened again in my life.
@ ..don't count on it, buddy...!-)




"Perfection" -> BDUF

@ If you want to only release "Perfection”,
@ you clearly need "Big Design Up Front”
@ everything must proceed top-down,
@ perfect identification of requirements,
@ begets perfect architecture,
@ begets perfect design,
@ begets perfect implementations,

o (it takes...) forever and ever, A-MEN!
@ alas! real life doesn't tend to co-operate...
@ stakeholders resent the "forever” part!-)
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BDUF vs the real world

@ requirements change all the time
@ you ain't ever gonna nail them perfectly!
@ architecture varies with design choices
@ design varies with implementation fechs
@ implementation _always__ has bugs
@ only discovered in real-world deployment
-->
® ITERATIVE development's the only way to go!
® deploy SOMEthing, fix bugs, improve, ...
® solve SOME user problems, win mindshare
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"Perfect": verb, -adjective!

o perfecting your work is great
@ keep doing it -- based on real data!

o perfection is a process, NOT a state
@ you never 'reach’ it

@ goalposts keep shifting
@ no laurels to rest on!
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What not to skimp on

@ light-weight, agile process and its steps
@ revision control, code reviews, testing...
@ proper release-engineering practices

@ code style, clarity, elegance

@ documentation y.

no cowboy coding!
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TCP/IP vs ISO/OSI

DHCP  SNMP | HTTP i FTP TFTP W
ICMP 6. Presentation

-
IP . . '

Ethernet

@ rough consensus...
@ ..and RUNNING CODE
(David Clark: MIT, but...
IETF front and center!)
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Xanadu vs the WWW

Yov can and musf ndersfond compitiss oW,

COMPUTER

HTML CSS PNG GIF JPEG
HTTP

URL

Hackish, incrementally
improved hypertext

Guess which one
conquered the world...?-)

Perfect, ideal
hypertext
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Intr syscall: ITS vs Unix

@ MIT AI Lab's ITS:

@ every long-running syscall needs to be
quasi-atomic AND interruptible...

@ so: every syscall must be able to...:
@ unwind state changes at ANY point
@ resume user-mode for intr. service
@ restart kernel-mode syscall again
@ early Unix:
@ errno<EINTR, return -1 -- that's it!-)
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Satisficer vs Maximizer

Satisficer:
90% is just fine,
take it, move on!

Maximizer:

Lol 99.99% is NOT
THE PARADOX I]F GHUlEE 100%,

80% may be OK [ttt SO it's A FAIL!

(20% of effort:
Pareto's Law)




Metaclass vs Decorator

class Meta(type):
def new ¥im, ny b, d}s

cls = type. new (m, n, b, d)

cls.foo = 'bar’
return cls
class X:

__metaclass = Meta

...VS...

def Deco(cls):
cls.foo = 'bar'
return cls
@Deco

class Y(object): pass

18



Good enough never is (or is it?)

@ Eric Ries, http://www.linkedin.com/today/
post/article/20121008194203-2157554-
good-enough-never-is-or-is-it

@ "Lean Startups” use the "middle way" fo...:

@ minimum viable product: that version of a
new product which allows a team to collect

the maximum amount of validated learning
with the least effort

@ 37signals’ Hansson disagrees: "just build
something awesome and ship it";-)
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"Lowering expectations”?

@ NO! our dreams must stay bigt BHAG!

@ Rightly traced and well ordered: what of
that? // Speak as they please, what does
the mountain care?

@ however: the best way TO those dreams
remains 'release early, release often”

o learn from real users' interactions

@ Ah, but a man's reach should exceed his
grasp // Or what's a heaven for?

@ Browning's Andrea del Sarto: less is more!
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Q& A

http://www.aleax.it/pyconl3 geige.pdf
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