"Good Enough” IS
Good Enough!

http://www.aleax.it/pyconl3 geige.pdf

(009l
©2013 Google -- aleax@google.com

Some Cultural Assumptions...:

@ everybody should always be striving for
perfection at all times!

@ settling for a software release that's
anywhere below “perfect!” is a most
regrettable compromise.

@ do you mostly agree with these...? OR...:

@ keep-it-simple, just-good-enough
@ launch early, launch often!
@ iteratively improve, enhance, refactor...

"Worse is Better"

@ Richard Gabriel, 1989, a Lisp conference
@ 'New Jersey" approach, AKA "WiB"
@ VS

@ "MIT/Stanford" approach, AKA "The Right
Thing"

@ years of debate afterwards (plenty of it by
RG, sometimes as "Nickieben Bourbaki")...

@ on BOTH sides of the issue!-)

Worse-is-better (e.g: Unix)

@ simplicity

@ implementation (esp!) AND interface

@ most important consideration in design
@ correctness

@ (slightly) better be simple than correct
@ consistency

@ "not overly inconsistent”
@ completeness

@ can be sacrificed to any of the top 3

® MUST be, if simplicity's threatened

A

"The Right Thing” ("MIT")

@ simplicity
@ esp. interface
@ correctness
@ absolute-must, top priority
@ consistency
@ Just as important as correctness
@ completeness
@ roughly as important as simplicity

Quoting RG himself...:

@ The right-thing philosophy is based on
letting the experts do their expert thing
all the way to the end before users get
their hands on it.

@ Worse-is-better takes advantage of the
natural advantages of incremental
development. Incremental improvement
satisfies some human needs...

G.K. Chesterton

@ Anything worth doing...
@ ...Is worth doing badly!

Cathedral, Bazaar ?

@ Eric Raymond, 1997 THE CATHED
@ focus: two diverging models of EAL[A VIV
software development S

@ Cathedral: close to RG's be .
"right-thing" MIT/Stanford *y B/ K3

@ experfs In charge RS R

@ Bazaar: chaotic, launch-and-
iterate NJ-like models -- crowd in charge

@ The core Bazaar idea: “given enough
eyeballs, all bugs are shallow”

WITH A FORENORD BY 36 YOUNS, CHARMAN & CEO OF RED HAT, I8¢

8

BUGS?! I don't DO bugs!

@ my very first program ever WAS bug-free

@ 1974: 3 freshmen HW design majors and
a Fortran program to compute conditional
probabilities of suit-division in bridge

@ we had to punch it into punched cards
@ we got one-&-only-one chance to run it..!

@ it ran perfectly that first-and-only-time...!
@ ..never ever happened again in my life.
@ ..don't count on it, buddy...!-)

"Perfection" -> BDUF

@ If you want to only release "Perfection”,
@ you clearly need "Big Design Up Front”
@ everything must proceed top-down,
@ perfect identification of requirements,
@ begets perfect architecture,
@ begets perfect design,
@ begets perfect implementations,

o (it takes...) forever and ever, A-MEN!
@ alas! real life doesn't tend to co-operate...
@ stakeholders resent the "forever” part!-)

10

BDUF vs the real world

@ requirements change all the time
@ you ain't ever gonna nail them perfectly!
@ architecture varies with design choices
@ design varies with implementation fechs
@ implementation _always__ has bugs
@ only discovered in real-world deployment
-->
® ITERATIVE development's the only way to go!
® deploy SOMEthing, fix bugs, improve, ...
® solve SOME user problems, win mindshare

11

"Perfect": verb, -adjective!

o perfecting your work is great
@ keep doing it -- based on real data!

o perfection is a process, NOT a state
@ you never 'reach’ it

@ goalposts keep shifting
@ no laurels to rest on!

12

What not to skimp on

@ light-weight, agile process and its steps
@ revision control, code reviews, testing...
@ proper release-engineering practices

@ code style, clarity, elegance

@ documentation y.

no cowboy coding!

13
LLLLLLLSHEEEHHHHHEGHGHGHESSSSSHHHS

TCP/IP vs ISO/OSI

DHCP SNMP | HTTP i FTP TFTP W
ICMP 6. Presentation

-
IP . . '

Ethernet

@ rough consensus...
@ ..and RUNNING CODE
(David Clark: MIT, but...
IETF front and center!)

14

Xanadu vs the WWW

Yov can and musf ndersfond compitiss oW,

COMPUTER

HTML CSS PNG GIF JPEG
HTTP

URL

Hackish, incrementally
improved hypertext

Guess which one
conquered the world...?-)

Perfect, ideal
hypertext

15

Intr syscall: ITS vs Unix

@ MIT AI Lab's ITS:

@ every long-running syscall needs to be
quasi-atomic AND interruptible...

@ so: every syscall must be able to...:
@ unwind state changes at ANY point
@ resume user-mode for intr. service
@ restart kernel-mode syscall again
@ early Unix:
@ errno<EINTR, return -1 -- that's it!-)

16

Satisficer vs Maximizer

Satisficer:
90% is just fine,
take it, move on!

Maximizer:

Lol 99.99% is NOT
THE PARADOX I]F GHUlEE 100%,

80% may be OK [ttt SO it's A FAIL!

(20% of effort:
Pareto's Law)

Metaclass vs Decorator

class Meta(type):
def new ¥im, ny b, d}s

cls = type. new (m, n, b, d)

cls.foo = 'bar’
return cls
class X:

__metaclass = Meta

...VS...

def Deco(cls):
cls.foo = 'bar'
return cls
@Deco

class Y(object): pass

18

Good enough never is (or is it?)

@ Eric Ries, http://www.linkedin.com/today/
post/article/20121008194203-2157554-
good-enough-never-is-or-is-it

@ "Lean Startups” use the "middle way" fo...:

@ minimum viable product: that version of a
new product which allows a team to collect

the maximum amount of validated learning
with the least effort

@ 37signals’ Hansson disagrees: "just build
something awesome and ship it";-)

19

"Lowering expectations”?

@ NO! our dreams must stay bigt BHAG!

@ Rightly traced and well ordered: what of
that? // Speak as they please, what does
the mountain care?

@ however: the best way TO those dreams
remains 'release early, release often”

o learn from real users' interactions

@ Ah, but a man's reach should exceed his
grasp // Or what's a heaven for?

@ Browning's Andrea del Sarto: less is more!

20

Q& A

http://www.aleax.it/pyconl3 geige.pdf

21

